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Abstract
The perimeter and area generating functions of exactly solvable polygon models
satisfy q-functional equations, where q is the area variable. The behaviour
in the vicinity of the point where the perimeter generating function diverges
can often be described by a scaling function. We develop the method of q-
linear approximants in order to extract the approximate scaling behaviour of
polygon models when an exact solution is not known. We test the validity of
our method by approximating exactly solvable q-linear polygon models. This
leads to scaling functions for a number of q-linear polygon models, notably
generalized rectangles, Ferrers diagrams, and stacks.

PACS number: 0550

1. Introduction

Models of polygons and related combinatorial objects have received considerable attention in
recent years (for a recent monograph, see [8]). They are of interest in physics as models of
vesicles or polymer molecules in solution. The interplay between bulk energy and surface
energy in these models gives rise to a phase transition from an extended phase to a compact,
ball-shaped phase [6]. There have been many studies of combinatorial aspects of these models,
including a general method for deriving the perimeter and area generating function of column-
convex models [3]. Less is known about analytic aspects of the solutions, which are needed
to understand the phase transitions of these models. Scaling functions which describe the
crossover behaviour at critical points have been computed for a number of polygon models,
mostly by indirect methods such as from a semi-continuous version of the models [13,14]. The
only direct derivation of scaling behaviour has been for staircase polygons [12] by methods
of uniform asymptotic expansions. There is, however, no known general method to obtain
scaling functions directly from functional equations.

This paper presents such a method in the simplest case of a q-linear functional equation
in the perimeter variable. This class of functional equations is satisfied by rectangles, Ferrers
diagrams, and stacks [14]. As a step towards the analysis of more complicated classes, we
introduce q-linear approximants of first order so as to analyse models which do not obey a

0305-4470/01/234783+14$30.00 © 2001 IOP Publishing Ltd Printed in the UK 4783



4784 C Richard and A J Guttmann

first-order q-linear equation, but which can be well approximated by one. We will test our
method by approximating exactly solvable q-linear polygon models of generalized rectangles,
Ferrers diagrams and stacks. In particular, we will analyse the model of Ferrers diagrams with a
hole and obtain a differential equation for the scaling function by analysis of the approximants.
We discuss the connection between this new type of approximant and the method of partial
differential approximants [7,15,17,18]. Finally we indicate how our methods can be extended
to more general classes of polygon models.

In a subsequent publication we will consider q-quadratic and other nonlinear
approximants, which we expect will give good approximations to the scaling function of
as yet unsolved models, such as self-avoiding polygons.

2. Phase diagrams and scaling functions

Let us briefly review phase diagrams of q-linear polygon models in order to fix our notation.
(We follow [11, 13, 14].) The perimeter and area generating function of a polygon model is
given by

f (x, y, q) =
∞∑

r,s,n=1

fr,s,nx
rysqn =

∞∑
n=1

fn(x, y)q
n (1)

where fr,s,n denotes the number of configurations of area n, horizontal perimeter r and vertical
perimeter s. We introduce the area activity q, the horizontal perimeter activity x, and the
vertical perimeter activity y. The perimeter generating function of the polygon model is given
by f (x, y, 1). A phase diagram is the graph of the radius of convergence of f (x, y, q) in
the parameter space x, y, q. Let us consider the isotropic version f (t, q) := f (t, t, q) of
the model, with t denoting the total perimeter, so that the phase diagram is two-dimensional.
For a typical q-linear polygon model such as Ferrers diagrams or stacks, defined below, the
phase diagram is as depicted in figure 1. Let us interpret the phase diagram using the grand-
canonical ensemble in which we count, for fixed area, all polygons by perimeter. The curve
qc(t) where the polygon generating function diverges is related to the free energy per unit area
of the ensemble,

− log qc(t) = lim
n→∞

1

n
log fn(t). (2)

The phase qc(t) < 1 consists of inflated polygons, whose perimeter grows like their area. The
phase qc(t) = 1 consists of ball-shaped polygons, their perimeter growing as the square-root
of their area. This results in a vanishing free energy for the ensemble. This behaviour is

tc tf
0

0

q
1

c
q (t)

t

Figure 1. Phase diagram of a typical q-linear polygon model.
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characteristic of a first order phase transition at the point tf where both phases meet. In the
ball-shaped phase qc(t) = 1, there are contributions to the boundary free energy, however1.
Let us denote by tc the point where the perimeter generating function diverges. At this point
a phase transition in the boundary free energy occurs: For t < tc, the contributions to the
boundary free energy are given by polygons of finite size, whereas for t > tc the contributions
to the boundary free energy derive from polygons of infinite size.

In the remainder of this paper we will concentrate on the critical behaviour about the
point tc where the perimeter generating function diverges. This point is the natural one to
look at from the perspective of power series approximations, which we employ. Moreover,
for rectangles and more complicated models such as self-avoiding polygons, the distinction
between the two phase transitions is irrelevant since tc and tf coincide for these models.

To describe the singular behaviour about tc in more detail, consider f (t, q) for t fixed, as
q approaches unity. For q-linear polygon models, q = 1 is a point of an essential singularity in
the generating function: For t < tc, f converges to a finite limit. If t = tc, f has a power-law
divergence with an exponent generally different from that of the perimeter generating function.
If t > tc, f diverges with an essential singularity. In many cases, the crossover between these
types of critical behaviour can be described by a scaling function P̄ (s̄) of combined argument
s̄ = (tc − t)(1 − q)−φ ,

f (t, q) ∼ 1

(1 − q)θ
P̄

(
tc − t

(1 − q)φ

) (
(t, q) → (t−c , 1−)

)
. (3)

The asymptotic behaviour of the scaling function at infinity is related to the behaviour of
f (t, q) for t < tc. To see this, assume that f (t, q) admits an asymptotic expansion of the form

f (t, q) =
∞∑
n=0

fn(t)(1 − q)n (t < tc) (4)

about q = 1, where the leading contributions of the coefficients fn(t) are given by

fn(t) = pn

(tc − t)γn
+ O (

(tc − t)−γn+1
)

(5)

as t approaches2 tc. For q-linear polygon models, the asymptotic expansion can be computed
recursively from the defining functional equation. It can be inferred from (3) that the existence
of a scaling function implies the restriction

γn = θ

φ
+
n

φ
(6)

on the exponents γn. Moreover, it can be seen that the numbers pn are the coefficients in the
asymptotic expansion of the scaling function

P̄ (s̄) =
∞∑
n=0

pn s̄
−γn . (7)

We assume that the scaling function P̄ (s̄) is regular at the origin. (This assumption is not always
fulfilled. The simplest counterexample is the model of rectangles in its isotropic version.) In
this situation, the behaviour of f at t = tc is given by

f (tc, q) ∼ P̄ (0)

(1 − q)θ
(q → 1−). (8)

1 The boundary free energy is defined as the limit fb(t) = limn→∞ 1√
n

log fn(t).
2 The coefficients may have a different asymptotic form, see rectangles at y = 1 below.
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The exponents θ and γ0 are called critical exponents of the model. θ describes the behaviour
of f (tc, q) about q = 1, whereas γ0 describes the power-law behaviour of the perimeter
generating function about tc. The exponent φ is called the crossover exponent and relates the
two critical exponents, see (6).

3. q-linear polygon models

We call a polygon model q-linear of N th order if its generating function satisfies a q-linear
functional equation3

G(t, q) =
N∑
k=1

ak(t, q)G(q
kt, q) + b(t, q) (9)

where ak(t, q) and b(t, q) are rational functions in t and q. Here, t may denote the total or
horizontal or vertical perimeter. Explicit realizations include rectangles, Ferrers diagrams,
and stacks [14]. They all satisfy a q-linear functional equation of first order in the horizontal
perimeter activity x.

We may construct new polygon models from given ones by allowing for decorations of the
polygons. In this way we may obtain models of polygons with holes, of coloured polygons, or
the like. Decorations may be interpreted in physical terms as allowing for a refined structure of
polygons, which may be a better approximation to vesicles than undecorated polygons. These
models have a natural interpretation in terms of random tilings of polygonal shape [16].

The question arises as to which decorations lead to models which continue to satisfy
q-linear functional equations. This is the case for models whose generating function can be
obtained by application of a linear differential operator (w.r.t. x, y, and q) to the generating
function of the undecorated model. For example, the model of Ferrers diagrams with a 1-hole,
defined in the appendix, satisfies a q-linear functional equation of order 3. Let us now focus
on the simplest class of decorated polygon models which satisfy a q-linear functional equation
of first order. To this end, consider first decorated rectangles of unit height. We denote the
generating function of this model by b1(x, y, q). For example, the generating function of a
rectangle with exactly k black unit squares is given by

b1(x, y, q) = y(qx)k

(1 − qx)k+1
(10)

while the generating function of undecorated rectangles is given by b1(x, y, q) = yqx/(1 −
qx). Let us now consider the polygon model of rectangles with a decorated top layer. As
indicated in figure 2, we can consider all rectangles of height m + 1 as being obtained from
rectangles of height m by adding a row of squares below the bottom layer. This construction
misses out all decorated rectangles of height 1. A similar construction can be applied to Ferrers
diagrams and stacks with a decorated top layer. The figure indicates that the models defined
above satisfy a q-linear functional equation of first order

Gs(x, y, q) = y

(1 − qx)s
Gs(qx, y, q) + b1(x, y, q) (11)

where s = 0, 1, 2 denotes rectangles, Ferrers diagrams, and stacks respectively, and b1(x, y, q)

is the generating function of decorated rectangles of unit height. Equation (11) can be iterated
to give a closed form for the area and perimeter generating function

Gs(x, y, q) =
∞∑
n=1

yn−1b1(q
nx, y, q)

(qx; q)sn−1

(12)

3 Properties of solutions of q-linear functional equations if q < 1 have been studied in [2], for recent results see [1].
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Figure 2. Graphical representation of the functional equations for rectangles, Ferrers diagrams,
and stacks with a decorated top layer.

where (t; q)n = ∏n−1
k=0(1−qkt) denotes the q-product. The perimeter generating function can

be obtained from the functional equation by setting q = 1 and solving for Gs(x, y, 1):

Gs(x, y, 1) = (1 − x)s

(1 − x)s − y
b1(x, y, 1). (13)

The models of rectangles, Ferrers diagrams and stacks are recovered as special cases where
the trivial decoration is chosen.

4. Scaling functions via dominant balance

We now discuss how to derive scaling exponents and scaling functions from q-linear functional
equations about the critical point where the perimeter generating function diverges. Our
technique relies on the method of dominant balance [5], which has previously been applied
to the derivation of scaling equations for a number of semi-continuous models [13, 14]. Our
approach lies in deriving scaling functions for the discrete models by manipulating the q-
functional equation directly. It consists of three steps. Firstly, the critical point is shifted to the
origin by a change of variables. Then a scaling variable is introduced, and a consistent set of
scaling exponents is sought. Finally, the resulting differential or difference equation is solved.

Consider the q-linear functional equation of first order

a0(x, q)f (x, q)− a1(x, q)f (qx, q)− b(x, q) = 0. (14)

Bearing later applications in mind, we restrict a0(x, q), a1(x, q), b(x, q) to polynomials in x
and q. For readability, we suppress all subsequent dependencies on q. As a first step, assume
that the critical point is at x = xc and q = 1. We expand the functional equation about the
critical point. To this end we introduce small variables ε = 1 − q and s = xc − x, and define
P(s) = f (xc − s). In these variables, the functional equation reads

(a0 − a1) (xc − s)P (s)− a1(xc − s)

∞∑
n=1

(ε(xc − s))n

n!

dn

dsn
P (s)− b(xc − s) = 0. (15)
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Second, we introduce scaled quantities

s = εφs̄ P = ε−θ P̄ (16)

and write equation (15) in terms of s̄ and P̄ . These quantities are just the scaling variable of
combined argument and the scaling function (3).

Here, φ is assumed to be positive. This leads to additional factors of ε in each summand.
The scaling equation results from taking only the terms with smallest exponents in ε, for
suitable choices of the exponents θ and φ.

Let us analyse the contribution from the nth order in the expansion of f (qx). Scaling
leads to exponents of the form n(1 − φ). This implies the constraint φ � 1, since other values
lead to arbitrarily small exponents with increasing n. If φ < 1, only the first order contributes,
leading to xc d

ds̄ P̄ (s̄). If φ = 1, higher orders cannot be ignored, and the dominant part of
the sum equals P̄ (s̄ + xc) − P̄ (s̄). This results in a differential or difference equation for the
scaling function. We will present typical examples of both kinds below.

We concentrate on critical points given by the smallest pole of the perimeter generating
function, that is at the smallest positive xc satisfying

a1(xc, 1) = a0(xc, 1). (17)

For polygon models, the coefficients of the perimeter generating function are all positive.
This generating function is obtained by setting q = 1 in (15), and hence implies that
b(x)/(a0(x) − a1(x)) has non-negative Taylor coefficients. This implies in particular that
b(xc, 1) is non-zero. Therefore, the leading contribution of b(x) in the scaling limit is of order
ε0. The contributions from a0(x)− a1(x) and from a1(x) have to be analysed for each model
separately. To obtain a non-trivial scaling equation, we demand that we get contributions from
each of the three terms in (15). This means that all three exponents in ε have to be equal. We
thus arrive at a set of equations determining θ and φ:

. . .− θ = . . .− θ + (1 − φ) = 0 (18)

where . . . denotes contributions from a0(x) − a1(x) and a1(x), respectively. We discuss
particular examples below. We finally mention that a scaling analysis of the q-linear equation
of order N can be carried out by the same method. If φ < 1, this results in a differential
equation, as found above for the case N = 1.

4.1. Ferrers diagrams

Ferrers diagrams satisfy a q-linear functional equation with

a0(x, q) = 1 − qx

a1(x, q) = y

b(x, q) = yqx.

(19)

The perimeter generating function diverges at xc = 1 − y. a1(x, q) and b(x, q) are non-zero
at the critical point, whereas a0(x, q)− a1(x, q) vanishes linearly in s = xc − x. The leading
contributions in the three terms of equation (15) give

φ − θ = −θ + (1 − φ) = 0. (20)

This leads to exponents

θ = 1

2
φ = 1

2
(21)
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and to the differential equation
1

y(1 − y)
s̄P̄ (s̄) = d

ds̄
P̄ (s̄) + 1. (22)

The solution, which is uniquely determined if we demand power-law behaviour as s̄ → ∞, is
given by a complementary error-function

P̄ (s̄) =
√
πa

2
erfc

(
s̄√
2a

)
exp

(
s̄2

2a

)
(23)

where a = y(1 − y). The asymptotic behaviour is given by

P̄ (s̄) ∼ a

s̄
(s̄ → +∞)

P̄ (s̄) ∼
√

2πa exp

(
s̄2

2a

)
(s̄ → −∞)

P̄ (0) =
√
πa

2
.

(24)

This is in agreement with both the scaling function found for the semi-continuous model and
with the asymptotic behaviour computed previously [14].

4.2. Decorated rectangles

We next consider the model of rectangles with a decorated top layer. The decoration consists
of exactly k black squares. The generating function of the top layer is

b1(x, y, q) = y(qx)k

(1 − qx)k+1
. (25)

As shown above, the model satisfies a q-linear functional equation with

a0(x, q) = (1 − qx)k+1

a1(x, q) = y(1 − qx)k+1

b(x, q) = y(qx)k.

(26)

The perimeter generating function has a pole of order k+1 at xc = 1. In contrast with the model
of Ferrers diagrams, this point coincides with the point xf where the first order phase transition
in the free energy occurs. The case k = 0 is closely related to rectangles4. Comparison of (26)
with the functional equation for rectangles shows that both models obey the same equations
about the critical point and hence have the same scaling functions.

The leading terms in the three summands of equation (15) give

(k + 1)φ − θ = (k + 1)φ − θ + (1 − φ) = 0. (27)

This leads to exponents

θ = k + 1 φ = 1 (28)

and we get the difference equation

(1 + s̄)k+1
(
P̄k(s̄)− yP̄k(s̄ + 1)

)− y = 0. (29)

In order to obtain the correct scaling function from this recursion, we have to force the
asymptotic behaviour as s̄ → ∞ to be of power-law type. This fixes the constant term,
and for y < 1 we arrive at the Lerch functions

P̄k(s̄) =
∞∑
n=1

yn

(n + s̄)k+1
. (30)

4 For rectangles, b1(x, y, q) = yqx/(1 − qx).
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The asymptotic behaviour is given by

P̄k(s̄) ∼ y

1 − y

1

s̄k+1
(s̄ → +∞)

P̄k(0) =
∞∑
n=1

yn

nk+1
.

(31)

The case k = 0 (rectangles) is in agreement with both the scaling function of the semi-
continuous model and the asymptotics computed in [14].

The case y = 1 is different. The perimeter generating function diverges for all values
of x, but it is possible to obtain scaling behaviour about xc = 1, as q approaches unity. For
k > 0, the solution of the difference equation is given by

P̄k(s̄) = (−1)k+1

k!
�k(1 + s̄) (32)

where�k(x) denotes the kth derivative of the�-function�(x) = ∂x log (x). The asymptotic
behaviour is given by

P̄k(s̄) ∼ 1

k

1

s̄k
(s̄ → +∞)

P̄k(0) = ζ(k + 1)
(33)

where ζ(k) = ∑∞
n=1 n

−k denotes the Riemann zeta function.
If k = 0, the scaling function diverges logarithmically as s̄ → ∞. In order to obtain a

well defined crossover behaviour, we compensate for this by the addition of a logarithmic term

P̄0(s̄) = −�(1 + s̄)− log ε. (34)

The asymptotic behaviour then follows as

P̄0(s̄) ∼ − log(s̄ε) = − log s (s̄ → +∞)

P̄0(0) = − log ε + γ
(35)

where γ = − ∫∞
0 e−t ln t dt ≈ 0.57721 denotes Euler’s constant. This gives the (non-uniform)

asymptotic behaviour first computed in [14]. The scaling function describing this behaviour
was not previously known, however.

5. q-linear approximants

We now consider the more general situation where we cannot obtain the generating function,
but only a finite number of terms thereof.

5.1. The method

The basic idea of q-linear approximants (of first order) is to fit a q-linear functional equation
to a function f (t, q),

a0(t, q)f (t, q) = a1(t, q)f (qt, q) + b(t, q) (36)

such that (36) is exact up to a given degree in the variables. Here, we restrict a0(t, q),

a1(t, q), and b(t, q) to be polynomials in t and q of degree nt and nq , say. The coefficients
of the polynomials can be found by solving the system of linear equations deriving from the
expansion of (36) in its two variables. This process is not unique, since there are many choices
of sets of linear equations. Moreover, (36) could be expanded about points other than the
origin, resulting in approximants accurate about these points. Our approach is to demand that



q-linear approximants: scaling functions for polygon models 4791

q-linear approximants shall reduce to linear approximants with polynomials of order nt , as q
approaches unity, which corresponds to an approximation of the perimeter generating function
by rational functions. Thus such approximants are only likely to be good if the perimeter
generating function is dominated by a pole. We therefore expand (36) about t = 0 and q = 1,
taking into account only terms up to a fixed order Nt(nt ) in t . In order to obtain the desired
limit,Nt(nt ) has to be chosen large enough. We order the resulting terms by increasing powers
in 1−q and, for each power, by increasing powers in t . For givenNt(nt ), we compute q-linear
approximants with polynomials of order nt in t and of order nq = 0, 1, . . . For given Nt(nt ),
the highest obtainable order nq depends on the number of equations deriving from (36). To
fix the multiplicative constant, we require a0(0, 0) = 1 + a1(0, 0). Information about the
scaling function is obtained by applying the method of dominant balance to the approximants,
as described above.

In order to test the method of q-approximants, we will apply the method to a number of
exactly solvable q-linear polygon models, which are mainly isotropic versions of the models
defined above. These models have a rational perimeter generating function and can be shown
to obey a q-linear equation of higher than first order. Therefore, q-linear approximants (of
first order) should give the correct differential equation for the scaling function. This can be
checked by computing the leading coefficients in the asymptotic expansion of the model, using
the anisotropic functional equation directly. If the functional equation of the isotropic model is
known, the scaling function can alternatively be obtained by applying the method of dominant
balance.

We will illustrate the method of q-approximants by deriving the scaling behaviour of the
q-linear models, defined above in the isotropic case, which do not obey a q-linear functional
equation of first order.

5.2. Stacks

The generating function f (t, q) of stacks with equal horizontal and vertical perimeter activity
x = y = t satisfies the q-linear functional equation of order 2

a0(t, q)f (t, q) = a1(t, q)f (qt, q) + a2(t, q)f (q
2t, q) + b(t, q) (37)

where the polynomials a0(t, q), a1(t, q), a2(t, q) and b(t, q) are given by

a0(t, q) = (1 − q2t)2(1 − qt)3

a1(t, q) = t2(1 + q)(1 − q2t)2

a2(t, q) = −q3t4

b(t, q) = −qt2(1 − q2t)(q4t3 − q3t2 + q2t + qt − 1).

(38)

We found this relation by computing q-linear approximants of second order to stacks. It
is possible to interpret this relation combinatorially [4]. The perimeter generating function
f (t, 1) diverges at tc = (3−√

5)/2 with a simple pole. The method of dominant balance can be
applied to compute the scaling function about tc. It is of the same form as the scaling function
for Ferrers diagrams, which corresponds to the observation made for the semi-continuous
models [14]. We used stacks in order to test the method of q-linear approximants. Their
rational perimeter generating function is obtained by approximants of cubic order (nt=3). A
scaling analysis of cubic approximants at q = 1 and tc = (3−√

5)/2 yields the correct type of
differential equation for the scaling functions for each approximant, with generally incorrect
coefficients. The accuracy of approximation increases with the degree nq in (1 − q) of the
polynomials. For Nt(3) > 6 and nq � 1, the approximants yield the correct scaling equation.
This result is robust against increasing the order nt .
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5.3. Decorated Ferrers diagrams

We introduce Ferrers diagrams with a decorated top layer: Consider a decoration consisting
of exactly k black squares. Approximants indicate that the scaling function is the same as for
(pure) Ferrers diagrams. We checked this for k = 0, 1, . . . , 5.

Instead of considering more complicated decorations of the top layer, we will now consider
Ferrers diagrams with a decorated bottom layer. Let us approximate the model with a decoration
consisting of exactly two black squares which may be placed anywhere in the bottom layer.
The model has the generating function

G(x, y, q) =
∞∑
n=2

n(n− 1)

2

y(qx)n

(qy; q)n (39)

where (t; q)n = ∏n−1
k=0(1 − qkt) denotes the q-product. The perimeter generating function of

the model is

G(x, y, 1) = xy2(1 − x)

(1 − x − y)3
. (40)

We consider the isotropic case where x = y = t . The critical point is tc = 1
2 . Since the

perimeter generating function is rational with numerator and denominator polynomials of
order 4 and 3, we use q-linear approximants with nt = 4 and Nt = 20. For nq > 2, the
dominant terms of the approximants give the differential equation(

s̄3 +
3

16
s̄

)
P̄ (s̄)−

(
s̄2

16
+

1

256

)
d

ds̄
P̄ (s̄)− 1

128
= 0 (41)

with exponents

θ = 3

2
φ = 1

2
. (42)

This result is robust against varying the values of nq and nt in the approximation. We checked
this up to nq = 8 and also for increasing values of nq at nt = 5 and nt = 6. The above
equation leads to the scaling function

P̄ (s̄) =
(∫ ∞

s̄

e−8t2

(1 + 16t2)2
dt

)
2e8s̄2

(1 + 16s̄2). (43)

The asymptotic behaviour is given by

P̄ (s̄) ∼ 2−7

s̄3
(s̄ → +∞)

P̄ (s̄) ∼ 2P̄ (0) e8s̄2
s̄2 (s̄ → −∞)

P̄ (0) =
√

2π

8
.

(44)

Using the methods described at the end of the appendix, it can be shown that the isotropic
model satisfies a q-linear equation of third order which can be used to test that the scaling
function obtained by q-linear approximants is correct.

5.4. Ferrers diagrams with a 1-hole

Ferrers diagrams with a 1-hole are defined in the appendix. We again consider the isotropic
model where t = x = y. Since the perimeter generating function is rational with numerator
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and denominator polynomials of order 6 and 5, we use q-linear approximants with nt = 6 and
Nt = 20. For nq > 2, the dominant terms of the approximants give the differential equation(

s̄3 +
3

16
s̄

)
P̄ (s̄)−

(
s̄2

16
+

1

256

)
d

ds̄
P̄ (s̄)− 1

128
= 0 (45)

with exponents

θ = 3

2
φ = 1

2
. (46)

This is the same equation as that for decorated Ferrers diagrams. This result is robust against
varying the values of nq and nt in the approximation. We checked this up to nq = 8 and also
by increasing values of nq at nt = 7 and nt = 8.

6. Comparison with partial differential approximants

There is an existing approximating method designed to compute critical exponents and scaling
functions about multi-singular points, known as the method of partial differential approximants
(PDA), due to Fisher and co-workers [7, 15, 17, 18]. We will briefly explain the method and
compare it to our approach.

The basic idea of PDA derives from the observation that a scaling function

f (t, q) = 1

(qc − q)θ
P̄

(
tc − t

(qc − q)φ

)
+ f0 (47)

obeys the first-order partial differential equation

θf (t, q) + f0 = φ(tc − t)
d

dt
f (t, q) + (qc − q)

d

dq
f (t, q). (48)

Therefore, PDA of the form

a(t, q)f (t, q) + b(t, q) = c(t, q)
d

dt
f (t, q) + d(t, q)

d

dq
f (t, q) (49)

where a(t, q), b(t, q), c(t, q) and d(t, q) are polynomials in t and q, may serve to detect
possible scaling behaviour about multi-critical points (tc, qc) defined by the simultaneous
vanishing of c and d ,

c(tc, qc) = d(tc, qc) = 0. (50)

The critical exponents θ and φ can then be read off as lowest-order coefficients in the expansion
of the approximating polynomials about the multi-critical point. Numerical methods can be
used to determine subsequent terms in the Taylor-expansion of the scaling function. It has
been shown [15] that numerical integration works if the crossover exponent φ is restricted to
1
2 < φ < 2.

In contrast to this general setup, q-linear approximants are only suited to the detection of
critical behaviour for models whose scaling function obeys a linear differential or difference
equation of first order. Equivalently, q-linear approximants can be used to test whether a
scaling function obeys an equation of the above type. If it does not, the approximants are
likely to fail to converge. If it does, the approximants will converge and give the underlying
differential or difference equation. This is then more specific information than can be gained
from the PDA approach, though the PDA approach currently approximates a broader range of
scaling behaviour. In subsequent work we will extend to nonlinear approximants, which should
combine the generality of the PDA approach with the specificity of information obtainable by
the q-approximants.
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We conclude with remarks about Ferrers diagrams and rectangles. Since Ferrers diagrams
have a crossover exponent φ = 1

2 , numerical integration using PDA [15] to obtain the
coefficients of the scaling function is unlikely to converge. The model of rectangles (34) does
not obey a scaling law of type (47). It can be shown that the scaling function gives quadratic
prefactors for the derivatives in (48). Therefore, the PDA method cannot be successfully
applied here in its standard form. For rectangles with the random chain considered above,
PDA may provide good estimates.

In summary, we would expect that the method reported here is likely to be better than PDA
for those systems whose scaling function is described by, or well approximated by, a linear
differential or difference equation of first order, while the PDA method might be expected
to better approximate those systems that do not. As we extend the method reported here to
higher order q-functional equations, and possibly other types of functional equation as well,
we would expect these new q-approximants to more appropriately represent a correspondingly
larger class of systems. We emphasise that these are remarks of a general nature, and not the
result of rigorous numerical comparisons, which we have not carried out.

7. Conclusion

We have developed techniques to obtain scaling functions for q-linear polygon models about
the point where the perimeter generating function diverges, using the method of dominant
balance. This led to scaling functions for a number of q-linear polygon models generalizing
rectangles, Ferrers diagrams and stacks. The question arises as to what extent can the scaling
behaviour for these models be obtained by direct methods? The most direct approach is to
approximate the perimeter and area generating function by their Euler–Maclaurin sum and
to estimate the resulting integral by methods of uniform asymptotic expansions [19], in the
spirit of [12]. The authors are, however, not aware of standard methods to do this, apart from
Bleistein’s method [10], which can be used to analyse Ferrers diagrams.

We introduced the method of q-linear approximants to obtain scaling functions of models
where an exact q-linear functional equation of first order does not exist. The method yields
the correct scaling functions for exactly solvable models which can be described by q-linear
functional equations of higher than first order, such as for decorated q-linear models. We claim
that q-approximants will be appropriate for the analysis of the scaling behaviour of statistical
models whose scaling function may be well described by a difference or differential equation
of first order.

The method of dominant balance can also be applied to obtain differential equations
for scaling functions from q-functional equations different from q-linear. For example, it is
possible to derive the differential equation for the scaling function of the model of staircase
polygons [13], which belongs to the q-quadratic class. This indicates that the idea of q-linear
approximants can be generalized to more complex classes of polygon models satisfying q-
algebraic functional equations. This leads to q-algebraic approximants. Even the q-quadratic
class is interesting to analyse, since there are solvable models where the scaling behaviour
is not known (such as staircase polygons with a hole; see also [9] for an example), and
more interestingly it can be used to approximate the generating function for self-avoiding
polygons, which displays a square-root divergence in its perimeter generating function. We
are developing our method in that direction.
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Figure 3. A typical Ferrers diagram. A hole may occur anywhere in the shaded region.
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Appendix: Ferrers diagrams with a 1-hole

We define the polygon model of Ferrers diagrams with a 1-hole and give a closed form for the
perimeter generating function and for the perimeter and area generating function.

The model of Ferrers diagrams with a 1-hole consists of all Ferrers diagrams where a unit
square is removed from the interior. For a typical Ferrers diagram, this is graphically depicted
in figure 3. If we denote the last column height by m, the last-but-one column height by m1,
the bottom row length by n and the second row length by n1, the number of possible sites for
a hole h(n,m, n1,m1) is given by

h(n,m, n1,m1) = area − n−m− n1 −m1 + 4. (51)

This translates into a formula for the generating function G(x, y, q) of Ferrers diagrams with
a 1-hole

G(x, y, q) = xy

(1 − qx)(1 − qy)

(
F − x(∂xF )− y(∂yF ) + q(∂qF )

)
(qx, qy, q) (52)

where F(x, y, q) is the generating function of Ferrers diagrams (without holes) of height and
width greater than one. In particular, we have

G(x, y, 1) =
(

xy

1 − x − y

)3 1

(1 − x)(1 − y)
. (53)

The perimeter generating function is rational with the same critical point as the Ferrers diagrams
(without holes). The perimeter and area generating function is given by

G(x, y, q) = qx2y

(1 − qx)(1 − qy)

∞∑
n=2

(q2y)n

(q2x; q)n
n+1∑
k=3

(k − 2)qkx

1 − qkx
(54)

where (t; q)n = ∏n−1
k=0(1−qkt) denotes the q-product. G(x, y, q) satisfies a q-linear equation

of third order. This equation can be derived by expressing G(x, y, q), G(qx, qy, q) and
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G(q2x, q2y, q) in terms of F , (∂xF ), (∂yF ), (∂qF ) at argument (q3x, q3y, q). This is done
by using (52) and the symmetrized version of the functional equation for F(x, y, q). The
resulting system of linear equations can be solved for F in terms of G. Insertion of the result
into the functional equation for F gives the functional equation for G.
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